W erze globalizacji i cyfrowej transformacji, automatyczne tłumaczenie staje się kluczem do sukcesu wielu firm. Wyobraź sobie sytuację, w której Twoja firma otrzymuje ważny dokument w języku niemieckim, a Ty potrzebujesz natychmiastowego tłumaczenia. Bariery językowe mogą stać się naprawdę poważną przeszkodą w prowadzeniu międzynarodowego biznesu. Dlatego narzędzia do tłumaczenia maszynowego stają się nieocenione. Ale które z nich jest lepsze dla Twojego biznesu? Czy wiesz, którego tłumacza maszynowego wybrać? Czy wykorzystać popularny Google Translate, czy może nowszy, ale bardzo skuteczny DeepL? Oto dogłębna analiza.

Co to jest neuronowe tłumaczenie maszynowe?

Neuronowe tłumaczenie maszynowe to zaawansowana forma tłumaczenia, która wykorzystuje głębokie sieci neuronowe do analizy i tłumaczenia tekstu. W przeciwieństwie do wcześniejszych metod, które tłumaczyły tekst według ustalonych reguł lub statystyk, neuronowe tłumaczenie maszynowe analizuje całe zdania, uwzględniając kontekst. Korzystają z niego najnowocześniejsze narzędzia takie jak Google Translate, DeepL, Microsoft Translator czy Yandex.

Zalety i wady tłumaczenia maszynowego

Główną zaletą tłumaczenia maszynowego jest zdolność do tworzenia bardziej płynnych i naturalnych translacji. Na przykład, podczas gdy wcześniejsze wersje Google Translate tłumaczyły każde słowo z osobna, nowoczesne technologie neuronowe są w stanie poprawnie zinterpretować to słowo w kontekście. Wadą jest natomiast konieczność dostępu do ogromnych baz danych i zaawansowanej mocy obliczeniowej.

Google Translate. Najpopularniejszy wybór

Google Translate, uruchomiony w 2006 roku, początkowo opierał się na metodach statystycznych. Jednak dzięki inwestycjom w technologie neuronowe, jakość tłumaczeń znacząco się poprawiła. Obsługując ponad 130 języków, Google Translate jest w stanie tłumaczyć:

  • teksty – po wklejeniu w okno translatora w przeglÄ…darce internetowej,
  • obrazy – szczególnie przydatne w przypadku tÅ‚umaczenia jÄ™zyków posÅ‚ugujÄ…cych siÄ™ innym zapisem niż jÄ™zyk, na który dokonujemy translacji; obsÅ‚uguje formaty .jpg, .jpeg, i .png,
  • pliki tekstowe – w formatach .docx, .pdf, .pptx, oraz .xlsx
  • caÅ‚e strony internetowe – po wklejeniu adresu strony tÅ‚umaczony tekst pozostaje w pierwotnym miejscu.

Jest również zintegrowany z wieloma usługami Google, takimi jak przeglądarka Chrome czy Google Docs, co czyni go łatwo dostępnym dla użytkowników na całym świecie. Można także korzystać z API, czyli wykorzystać Google Translate do automatycznego tłumaczenia swojej strony czy aplikacji.

Translator od Googla jest dostępny na platformach internetowych, Android i iOS. Jedną z najbardziej praktycznych funkcji Google Translate jest tłumaczenie stron internetowych poprzez URL, czego nie posiada jego konkurent, DeepL.

DeepL. Wschodząca gwiazda tłumaczenia maszynowego

DeepL bardzo szybko zdobył uznanie za swoją zdolność do dostarczania tłumaczeń o wyższej jakości niż konkurenci. DeepL trenuje swoje sieci neuronowe wykorzystując bazę danych Linguee, co pozwala na bardziej precyzyjne tłumaczenia. W tej chwili obsługuje 28 języków i oferuje unikalne funkcje, takie jak słownik tłumaczeń i dostosowywanie tonu.

Co więcej, DeepL oferuje płatną wersję Pro, która zapewnia dodatkowe funkcje, takie jak większy limit znaków i dostęp do API. Jest dostępny na platformach internetowych, desktopowych (Mac i Windows), Android i iOS.

Google Translate vs DeepL. Porównanie

Chociaż obie platformy wykorzystują technologie neuronowe, różnią się w kilku kluczowych aspektach.

  • DokÅ‚adność tÅ‚umaczenia – DeepL zazwyczaj osiÄ…ga lepsze wyniki niż Google Translate w testach Å›lepych, zwÅ‚aszcza dla par jÄ™zyków europejskich. W testach, w których oceniano tÅ‚umaczenia, DeepL czÄ™sto miaÅ‚ lepsze wyniki tÅ‚umaczenia. Ponadto tÅ‚umaczenia DeepL sÄ… bardziej naturalne, zwÅ‚aszcza dla jÄ™zyków europejskich.
  • ObsÅ‚ugiwane jÄ™zyki – Google Translate obsÅ‚uguje ponad 130 jÄ™zyków, co czyni go zwyciÄ™zcÄ… w tej kategorii. W przeciwieÅ„stwie do tego DeepL obsÅ‚uguje tylko ponad 30 jÄ™zyków. Chociaż obie usÅ‚ugi obejmujÄ… popularne jÄ™zyki, Google Translate oferuje wiÄ™cej opcji dla mniej popularnych jÄ™zyków.
  • Integracje/Opcje – Obie usÅ‚ugi oferujÄ… interfejsy internetowe dla przypadkowego tÅ‚umaczenia. DeepL oferuje aplikacjÄ™ na pulpit dla systemów Windows i macOS, podczas gdy Google Translate nie. Obie majÄ… aplikacje mobilne. Do tÅ‚umaczenia stron internetowych obie oferujÄ… usÅ‚ugi API.
  • Cena – Zarówno Google Translate, jak i DeepL oferujÄ… darmowe wersje internetowe. W przypadku korzystania z API obie majÄ… darmowy limit do 500 000 znaków miesiÄ™cznie. Google Translate pobiera opÅ‚atÄ™ w wysokoÅ›ci 20 dolarów za każdy milion znaków po przekroczeniu darmowego limitu, podczas gdy DeepL ma stałą stawkÄ™ 5,49 dolarów miesiÄ™cznie plus 25 dolarów za milion znaków.

5 zastosowań automatycznego tłumacza dla biznesu

Współczesny biznes coraz częściej korzysta z automatycznych tÅ‚umaczeÅ„. DziÄ™ki nim możliwe jest szybkie i efektywne przekÅ‚adanie »å´Ç°ì³Ü³¾±ð²Ô³Ùó·É, stron internetowych czy komunikacji z klientami z różnych krajów.

  1. Automatyczne tÅ‚umaczenie »å´Ç°ì³Ü³¾±ð²Ô³Ùó·É
  2. W Å›wiecie biznesu, gdzie czas to pieniÄ…dz, szybkość tÅ‚umaczenia jest kluczem. Wyobraź sobie miÄ™dzynarodowÄ… korporacjÄ™, która codziennie otrzymuje setki »å´Ç°ì³Ü³¾±ð²Ô³Ùó·É w różnych jÄ™zykach. Zamiast czekać dni lub tygodnie na tÅ‚umacza, można użyć DeepL lub Google Translate do szybkiego przetÅ‚umaczenia i wstÄ™pnej analizy.

  3. Lokalizacja stron internetowych i aplikacji
  4. W dzisiejszych czasach wielojęzyczna obecność online jest kluczem do globalnego sukcesu. Dzięki automatycznemu tłumaczeniu, firmy mogą łatwo i szybko lokalizować swoje strony internetowe i aplikacje dla różnych rynków.

  5. Tłumaczenie głosowe w czasie rzeczywistym
  6. Technologia ta ma ogromny potencjał, zwłaszcza w sektorze turystycznym i hotelarskim. Wyobraź sobie hotel, który korzysta z tłumaczenia głosowego w czasie rzeczywistym, aby komunikować się z gośćmi z różnych krajów. To nie tylko poprawia doświadczenie klienta, ale także szeroko otwiera drzwi dla międzynarodowych klientów.

  7. Automatyczna translacja tekstu na obrazie i wideo
  8. W erze mediów społecznościowych, treści wideo są królem. Dzięki automatycznemu tłumaczeniu napisów, firmy mogą łatwo dostosować swoje treści wideo do różnych rynków. To nie tylko zwiększa zasięg, ale także angażuje międzynarodową publiczność.

Podsumowanie. Teraźniejszość i przyszłość automatycznego tłumaczenia

Automatyczne tłumaczenie stało się nieodłącznym elementem biznesu w erze globalizacji. Wybór między Google Translate a DeepL zależy od konkretnych potrzeb firmy. Jedno jest pewne: technologia tłumaczenia maszynowego będzie nadal się rozwijać, oferując coraz lepsze rozwiązania dla biznesu.

W przyszłości możemy spodziewać się, że tłumaczenie maszynowe będzie wykorzystywane w coraz bardziej zaawansowanych aplikacjach, takich jak tłumaczenie w czasie rzeczywistym podczas wideokonferencji czy nawet automatyczne tłumaczenie myśli bezpośrednio na język, w którym chcemy się komunikować, za pomocą interfejsów mózg-komputer.

Automatyczny tłumacz to nie jedyne możliwości AI, przeczytaj także: Czatboty tekstowe wspomagane przez AI

Jeśli podobają Ci się treści, które tworzymy, sprawdź również:

Google Translate vs DeepL. 5 zastosowań tłumaczenia maszynowego dla biznesu | AI in business #8 marta matylda kania avatarbackground

Autor: Marta Matylda Kania

Założycielka Superpowered by AI. Opracowuje dla biznesu procesy tworzenia treści przez generatywną sztuczną inteligencję. Interesuje się przyszłością AI w biznesie, pisze zaawansowane prompty i prowadzi szkolenia z ChataGPT dla firm.

AI w biznesie:

  1. O działaniu i biznesowych zastosowaniach voicebotów
  2. Wirtualny asystent, czyli jak rozmawiać z AI?
  3. Sztuczna inteligencja w biznesie. Wprowadzenie
  4. AI w biznesie: zagrożenia i szanse cz.1
  5. AI w biznesie: zagrożenia i szanse cz.2
  6. Automatyczne przetwarzanie »å´Ç°ì³Ü³¾±ð²Ô³Ùó·É
  7. Automatyczny tłumacz. Inteligentna lokalizacja produktów cyfrowych
  8. Czatboty tekstowe wspomagane przez AI
  9. DziÅ› i jutro biznesowego NLP
  10. Czy sztuczna inteligencja zastąpi analityków biznesowych?
  11. Planowanie wpisów w mediach społecznościowych. W czym może pomóc AI?
  12. Automatyczne wpisy w mediach społecznościowych? Co może dzisiejsza AI
  13. Nowe produkty i usługi oparte o działanie sztucznej inteligencji
  14. ±·²¹°ù³úÄ™»å³ú¾±²¹ AI dla managera
  15. Sześć pluginów do ChatGPT, które ułatwiają prowadzenie biznesu
  16. Czat GPT wchodzi do biznesu
  17. Burza mózgów z czatem GPT
  18. Syntetyczni prezenterzy. Najciekawsze narzędzia AI do tworzenia video
  19. Generatywna sztuczna inteligencja dla biznesu
  20. Muzyka i głosy AI w materiałach firmowych
  21. Czat GPT-4 - nowe możliwości dla biznesu
  22. Przyszłość AI według raportu McKinsey Global Institute
  23. Co to jest NLP, czyli przetwarzanie języka naturalnego w biznesie
  24. Zastosowania AI w biznesie. PrzeglÄ…d
  25. Jak sztuczna inteligencja może pomóc w BPM?
  26. Rola AI w podejmowaniu decyzji biznesowych
  27. Czym jest Business Intelligence?
  28. AI i media społecznościowe – co o nas mówią?
  29. Sztuczna inteligencja w zarzÄ…dzaniu contentem
  30. DziÅ› i jutro kreatywnej AI w biznesie
  31. Multimodalna AI. Nowe zastosowania sztucznej inteligencji w biznesie
  32. Hiperautomatyzacja i jej zastosowania w biznesie
  33. AI w EdTech. Przykłady 3 firm, które wykorzystały potencjał sztucznej inteligencji
  34. Nowe interakcje człowiek — sztuczna inteligencja. Jak AI zmienia sposób obsługi urządzeń?
  35. Przyszłość rynku pracy. Czy AI zastąpi ludzi?
  36. Sztuczna inteligencja i środowisko. 3 rozwiązania AI, które pomogą Ci budować zrównoważony biznes